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Abstract. Large simulations of 2~ site percolation on a square lattice provide several 
estimates of the fractal dimension D, of the ‘hull’ or outer boundary of percolation clusters 
close to criticality. Statistical estimates based on an ensemble of more than 10’ clusters 
with varying sizes yield D, = 1.74*0.02. Geometrical measurements of the hull two-point 
correlation for individual clusters with more than lo5 sites give D, = 1.76*0.01. The 
observed scaling behaviour is the same both slightly above and below pc .  

The recent interest in the geometrical aspects of phase transitions has been stimulated 
by the success of Mandelbrot’s (1982) fractal geometry in both understanding and 
quantifying complicated shapes and providing a geometric basis for many physical 
relations. The idealised percolation problem, in which a random mixture of conducting 
(fraction p )  and insulating (fraction 1 - p )  material abruptly exhibits long-range conduc- 
tion (connectivity) at a critical concentration p = p c ,  has proven to be a fruitful analogue 
for many phase transition problems (see, for example, the excellent review by Stauffer 
1979 or the articles in Deutscher et a1 1983). In this case, the phase transition is 
obviously geometric and the connection between the ‘universal’ exponents and 
geometrical scaling quantities (typically, a fractal dimension) has been established 
(Mandelbrot 1982, Stauffer 1979 (and references therein), Voss et a1 1982, 1983). 
The percolation problem is, moreover, ideally suited to large scale computer simula- 
tions. To date, many of the detailed studies of scaling behaviour (for example, Leath 
1976, Leath and Reich 1978, Stanley 1977, Stauffer 1979) have come from such 
computer ‘experiments’. This letter presents the results of new simulations designed 
to measure the fractal dimension of percolation cluster ‘hulls’ or outer perimeters in 2 ~ .  

Most of the fractal studies of percolation have concentrated on the fractal dimension 
D of the largest (‘infinite’) cluster at pc (see, for example, Kapitulnik et a1 1983 or 
Stauff er 1979). Both computer simulations and geometric measurements of actual 
metal film micrographs (Voss et a1 1982, 1983, Kapitulnik and Deutscher 1983, 
Deutscher et a1 1983) show that D= 1.9. This is in agreement with theoretical 
calculations that relate D to the universal exponents (Mandelbrot 1982, Stauffer 1979). 
In 2 ~ ,  D = 2 - P /  v = 1(2 + y /  v) = 2 - tv .  Other fractal dimensions are, however, impor- 
tant in the percolation problem and are expected to be of physical significance. 
Collectively, the boundary of all clusters is a space-filling fractal with Dall = 2 (Mandel- 
brot 1982, Voss et a1 1982,1983). This fractal dimension governs the perimeter against 
area scaling and, together with D of an individual cluster, determines the cluster size 
scaling exponent T at pc, T = 1 + Dall/D. The fractal dimension of the percolation 
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cluster ‘backbone’ or bi-connected component (Db = 1.7) is also of physical interest 
(Kirkpatrick 1979). 

Another apparently scaling quantity is the cluster external perimeter or ‘hull’ (a 
descriptive term first applied by Mandelbrot 1982). Early investigations suggest that 
the hull H varies with the cluster size s (area in 2 ~ )  as (Leath and Reich 
1978). The physical significance of the hull may be related to that of a surface energy. 
Several different methods are used here with large 2~ simulations to demonstrate the 
scaling behaviour of percolation cluster hulls and to estimate their fractal dimension, 

The simulations approximated 2~ site percolation using a 1024 by 1024 square 
lattice with periodic boundary conditions. For each sample a random number generator 
was used to independently occupy each site with probability p .  A fast algorithm was 
used to find all connected clusters. Connectivity required occupation of at least one 
of the four neighbour sites (two horizontal and two vertical). Once determined, the 
cluster statistics were averaged over clusters having similar areas s As (number of 
sites). The quantities measured were N ( s ) ,  the number of clusters with s sites; A(s), 
the average size of an s-site cluster defined as A = ( A X A  Y)”’; and P ( s )  the average 
s-site cluster perimeter, where P = number of occupied sites neighbouring an 
unoccupied site. 

Measurement of the cluster hulls required additional computation. In a similar 
fashion to the analysis of the occupied sites, the empty-site ‘holes’ were determined 
with connectivity based on eight neighbour sites (two horizontal, two vertical and 
four corners). The use of eight-neighbour connectivity for the empty sites preserves 
the occupied-empty symmetry about pc. For p < pc there is long-range hole connectivity 
while for p > pc there is only long-range cluster connectivity. Each occupied-site cluster 
could then be associated with a number of neighbouring empty-site holes. The cluster 
hull or external perimeter is defined here as the number of occupied sites that neighbour 
the largest hole. For finite clusters the largest hole is the obvious cluster exterior. 
Above pc (or for occasional large clusters below pc that span the finite periodic sample) 
the hull is the boundary with the largest interior hole. It was, thus, possible to estimate 
H ( s ) ,  the average number of hull sites, and Ato,(s), the total area (number of sites) 
enclosed by the hull, for an s-site cluster. 

Figure 1 shows a typical largest cluster (in grey) from one sample with p = 0.592 
just below pc. This cluster spans the sample in one direction. Occupied sites that 
belong to the hull are shown in black. Figure 1 shows that even for a very large cluster 
(more than lo5 sites) many of the seemingly interior sites actually border the exterior 
through intricate fjords. 

Figure 2 shows the variation of the number of sites in the hull with cluster size 
below ( p  = 0.590), above ( p  = 0.595) and close to pc ( p  = 0.593). Each set of points 
represents an average over 20 to 50 1024 by 1024 samples. As discussed above, the 
hulls H of all clusters with size s As are averaged to give an estimate of H ( s ) .  As a s 
to give uniform spacing in log s. The full line shows a fit of the data to the form 
H ( s ) ~ s  in excellent agreement with the smaller simulations of Leath and 
Reich (1978). There is no significant difference in the results above, below or close 
to Pc. 

The dependence shown in figure 2 is not, however, directly related to the fractal 
dimension Dh of the hulls. Figure 3 shows two alternative demonstrations of hull 
scaling behaviour that are directly related to Dh. One of the most common uses of 
the fractal dimension D has been to describe the variation of the amount or ‘mass’ M 

Dh * 

0.89*0.02 . 
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Figure 1. Largest cluster (grey) and its hull or external perimeter (black) for a typical 
1024 by 1024 sample of 2D square lattice site percolation with p = 0.592 just below p,. 

Figore 2. Hull against area scaling for the ensemble of all clusters from multiple 1024 by 
1024 samples near pc. The full line shows the least-squares fit to a power-law dependence 
( H  cc s0.8Y*(1.02 ). The values of p are: A,  0.595; 0, 0.593; V, 0.590. 

Figure 3. Ensemble estimates of the hull fractal dimension D,, from the same clusters as 
figure 2. Full lines show power-law fits. ( a )  Hull against characteristic cluster size 

The values of p are: A, 0.595; 0,0.593; V, 0.590. 
A = (AXA y)*l2 ( H x  ,+1.72*0.04 ). (b)  Hull against enclosed area, A,, (HccA~;~70*0.0'5 ). 
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of an individual object within a distance A as A varies (Mandelbrot 1982). Thus, 

M ( A )  a A D. (1) 

This concept can be extended to an ensemble of scaling objects each of which is 
characterised by some largest length scale A, provided all of the objects are examined 
with the same small scale resolution (in this case, the lattice size). Equation (1) then 
takes on a statistical meaning where M ( A )  becomes the average over all objects of 
similar characteristic size A. Figure 3(a)  shows a plot of average hull H against 
characteristic cluster size for the same samples as figure 2. The behaviour is obviously 
scaling and the fractal dimension D h  comes directly from the power-law fit shown as 
the full line. Here Dh= 1.72*0.04. 

An alternative statistical measure of D h  is from perimeter, P against area, A scaling 
in the plane. Once again, for an ensemble of fractal objects of varying sizes examined 
with the same resolution (Mandelbrot 1982), 

PEAD’’, (2) 

where D is the fractal dimension of the perimeter. For common Euclidean shapes, 
such as a collection of various sized circles, the perimeters have D = 1 and equation 
(2) gives the familiar PEA1/*.  For the ensemble of all percolation clusters, P a A  
leading to Dall = 2 (Voss et a1 1982, 1983, Mandelbrot 1982) as discussed above. This 
relation has also been used to estimate the fractal dimension for 2~ projections of 
cloud and rain areas (Lovejoy 1982). Figure 3(b) shows a plot of percolation cluster 
hull against total enclosed area A,,, for the same samples as figure 2. For a given 
cluster, A,,, is the sum of the occupied sites s, the interior holes, and all smaller clusters 
completely surrounded by the cluster in question. The scaling behaviour is again 
obvious and the fractal dimension Dh can be read directly from the power-law fit as 
$h = 0.870* 0.015 in excellent agreement with figure 3(a) .  

Whereas figure 3 demonstrates the statistical determination of D h  from the ensemble 
of percolation clusters, Dh can also be estimated with equation (1) from the scaling 
properties of individual large clusters. A convenient method is based on the two-point 
correlation function G ( r ) .  G(r )  is the probability that two points separated by a 
distance r are both in the same object (here, a given cluster’s hull). For a fractal 
(Mandelbrot 1982), M(r)a jG(r ) r  d r  and 

G( r )  r2-O. (3) 

A 2~ fast Fourier transform (FFT) was used as a computationally efficient means of 
calculating G (  r )  from an individual hull picture ( P ( r )  = 1 if r is in the hull, 0 otherwise). 
The 2D inverse transform of the spectral density immediately yields G(r )  which was 
then averaged over all directions. Figure 4 shows the measured G(r )  averaged over 
the largest cluster hull in 20 samples slightly above and slightly below pc. There is no 
appreciable difference in the scaling behaviour of G(r )  on either side of pc and the 
measured Dh=2-O.234*Oo.0O3 is in good agreement with that of the ensemble 
estimates of figure 3. 

In summary, large simulations of 2~ site percolation on a square lattice have been 
used to demonstrate the geometrical scaling behaviour of the hull or external perimeter 
of percolation clusters close to pc.  Different methods of estimating the hull fractal 
dimension D h  were presented. Ensemble estimates based on more than lo6 clusters 
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Figure 4. Estimate of the hull two-point correlation G ( r )  against r for the largest cluster 
from each of 20 1024 by 1024 samples slightly above and below pc. Full line shows 
power-law fit ( G ( r ) z  r-0234*0003). The values of p are: A ,  0.594; V, 0.592. 

with varying sizes yield D = 1.74ik0.02. Geometrical measurements of the hull 
two-point correlation G ( r )  for large clusters with more than lo5 sites give D =  
1.76 + 0.01. No difference was observed in the scaling properties above and below pc. 

Helpful discussions with B B Mandelbrot are gratefully acknowledged. 
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